Fast decay of plasma return currents due to whistler waves
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The evolution of the return current induced by a charged particle beam in a magnetized plasma is
studied. The beam current is perpendicular to the background magnetic field. The return current is
shown to depart from the beam along the background magnetic field with a whistler rather than a
diffusion or an Alfvén velocity. In a plasma bounded by two conductors the return current oscillates
with the whistler period. Analytical expressions for the evolution of the magnetic field and of the
plasma return current are derived for a beam with a finite width and with various rise time
dependences. When the whistler time is shorter than the rise time of the beam current, the plasma

return current does not grow beyond the whistler time.

I. INTRODUCTION

The generation and the decay of plasma return currents
due to the injection of a charged particle beam is a long
studied subject.'~* The plasma return current forms in a few
plasma periods and it decays in the magnetic field diffusion
time 1,=(4mL%/c?7,.) (c is the light velocity, L is the char-
acteristic length of the system, and 7, is the collisional re-
sistivity).

The decay of the plasma return current induced by the
injection of a charged particle beam into a magnetized
plasma, was studied by Berk and Pearlstein.! Assuming that
there are no variations along the background magnetic field,
they showed that when the beam propagates perpendicular to
the background magnetic field, the decay of the return cur-
rents is determined by the ion dynamics. Fast magnetosonic
waves propagate across the background magnetic field and
the resulting characteristic decay time is £,=L/V 4 (V, is the
Alfvén velocity). For plasmas of low collisionality this time
is much shorter than ¢p, and thus the plasma return current
decreases faster and the self-magnetic field of the beam ap-
pears faster than when the magnetic field evolves due to
diffusion only. When the beam propagates along the back-
ground magnetic field the decay of the plasma return current
is not influenced by the ion dynamics and the decay time is
tp-

The penetration of an external magnetic field into a2 mag-
netized plasma along the background magnetic field has re-
cently been analyzed.® The external magnetic field was as-
sumed to be generated in the vacuum adjacent to a plasma,
by currents that flow outside the plasma. It was shown that if
the background magnetic field has a component normal to
the plasma—vacuum boundary, the magnetic field in the
vacuum propagates into the plasma along the background
magnetic field on the whistler time scale rather than on the
diffusion time scale. The whistler time scale is
tw=4mL%/c* py where ny=B,/nec (B, is the background
magnetic field, n the plasma density). The whistler propaga-
tion is governed by the electron rather than by the ion dy-
namics. The plasma pushing becomes relevant only when the
magnetic field propagates over a distance of the order of the
ion skin depth.

The whistler propagation has also been suggested® as the
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mechanism responsible for the observed fast penetration into
a charge-neutralized ion beam of a magnetic field across
which the beam propagates. The two-dimensional linearized
problem has been solved in the rest frame of the beam and a
whistler propagation of the magnetic field has been demon-
strated. There also seems to be direct experimental evidence
of this whistler propagation of the external magnetic field
into a charged-neutralized ion beam.’

In the present paper we study, as was studied in Ref. 1,
the decay of the plasma return current induced by the injec-
tion of a charged particle beam into a magnetized beam.
However, contrary to Ref. 1, we allow variations along the
background magnetic field. Similarly to the problems treated
in Refs. 5 and 6, we show that, due to these variations, the
electron, rather than the ion, dynamics is dominant, as long
as L<c/w,; (the ion skin depth). The magnetic field then
propagates along the background magnetic field as a whistler
wave, with a velocity higher than the Alfvén velocity. The
decay of the return current is on the whistler time scale ty, .

Charged particle beams are injected into magnetized
plasmas of a characteristic length shorter than the ion skin
depth, in several plasma devices. In a2 magnetically insulated
ion diode some of the electrons emitted from the cathode
flow through the magnetized anode plasma.® In the current-
toggled plasma opening switch, electrons emitted from the
cathode are injected into the plasma that is immersed in the
magnetic field of the slow field coil.” In certain schemes for
ion-driven inertial confinement fusion, a charged-neutralized
ion beam is focused by a solenoidal magnetic lens.!" The
present paper may be relevant to the evolution of the plasma
return current in such devices.

We consider a one-dimensional (1-D) model problem. A
charged beam of a specified current propagates in the plasma
across a background magnetic field. This configuration is
similar to the configuration analyzed in the 1-D model prob-
lem of Ref. 1, but while in Ref. 1 the variations were normal
to the background magnetic field, we allow variations along
the background magnetic field only. The simplified 1-D ge-
ometry enables us to describe analytically the evolution of
the plasma return current for various rise times and spatial
distributions of the specified beam current. Concurrently
with our preliminary research,'! the two-dimensional (2-D)
evolution, that is also affected by the finite length of the
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beam and by the nonuniformity of the background magnetic
field, has been studied numerically by Oliver and Sudan.'?

In Sec. II we briefly review the model for the whistler
wave magnetic field propagation in plasmas due to the Hall
field.* In Sec. III the 1-D model for the plasma response to a
charged beam is presented. In Sec. IV the return current and
the magnetic field are calculated for the case of an infinitely
narrow beam of a current that rises either as a step function
in time or linearly in time. In Sec. V the return current and
the magnetic field are calculated for a beam of a finite width.
Finally, Sec. VI is dedicated to conclusions.

ii. WHISTLER WAVE PROPAGATION OF THE
MAGNETIC FIELD IN PLASMAS

We here briefly review the model presented in Ref. 5 for
the fast magnetic field propagation due to the Hall field in a
magnetized plasma of low collisionality.

The time scale for the process under consideration is
assumed to be longer than the electron cyclotron period and
shorter than the ion cyclotron period, thus the ions are as-
sumed to be immobile, and the magnetic field propagation is
caused by the electrons. The displacement current is ignored.
The governing equations are Faraday’s law,

1
VXE=—E 3B, (1)
Ampere’s law,
4
VXB= _C_ J, (2)
and Ohm’s law with the Hall field,
E= + IxB 3
- 77(.] enc . ( )

Here E, B, and J are the electric field, the magnetic field, and
the current density, respectively. A magnetized plasma with a
slab geometry is considered. All quantities are assumed to
depend only on the x coordinate, parallel to a background
magnetic field B,=B,%. A magnetic field B=B.y is
switched on as a step function in time at £=0 at the vacuum—
plasma boundary that is located at x=0 (i.e., one face of the
plasma slab). The plasma fills a region that is bounded on the
other face of the slab at x=L by a conductor (the case of a
semi-infinite plasma was also considered in Ref. 5). The
problem turns out to be linear irrespective of the relative
intensities of the background and the propagating magnetic
fields. The equation for the propagating magnetic field
B=B,+iB, is a complex diffusion equation,
c? )

9B=7—M3;B, 4)
where 7=75,+iny (py=B,/nec). It has been shown® that
for 7./ 7,<€1 the magnetic field propagates with the whistler
characteristic time ty=4wL%/c?7y rather than with the
much longer diffusion time ¢p,=4wL%/c?7, . Because of the
analogous roles of 7, and of 7y in the definitions of the
diffusion and the whistler times, 7y is named “Hall resistiv-
ity,” although one should remember that the Hall field does
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not cause any dissipation. Furthermore, the fast evolution
can also occur when 7,=0 and the dissipation then is zero.

For later purposes we here write the solution of Eq. (4)
for the magnetic field in a finite plasma slab,

]

Beip 1 2 z 1 +1 mx
=iBy{ 1—— sinf | n+5] —
T n=0 (n+ %) 2 L
(n+8H2%7c?
Xexp | ~——rr— (p+inggt] ¢ (5)

1il. ONE-DIMENSIONAL BEAM MODEL

In this section we derive general expressions for the evo-
lution of the plasma return current, that is induced by a
charged beam of a specified current density. In the next sec-
tions we use these expressions for some particular cases. As
in the previous section, the governing equations are Fara-
day’s law [Eq. (1)], Ampere’s law,

4
VxB=—(J,+J,) (6)

(where now the current density J=J,+J, is the sum of the
beam current density J,, and the plasma current density J,)
and the equation for the plasma current density

J,xB
énc

E=29J,+ . (7)
Also as in the previous section, we assume that the plasma is
immersed in a uniform background magnetic field B, =B x,
and that all quantities depend only on the x coordinate, along
the background magnetic field. The beam of a current
I,(t)=1,Y(¢t) flows in the z direction, and its current density
is J,=J,Z. The beam density is assumed to be much smaller
than the plasma density n.

We define A=A, +iA, (where A stands for E, J, or B).
Equation (7) is rewritten as

E=(7/C+i77H)Jp' (8)

Taking the derivative of Eq. (6) with respect to time, and
using Eqgs. (1) and (8), we obtain the following equation for
the electric field

PE 4w

i at(‘]b+ )

77c'+i77H) )

We denote by A(s) the Laplace transform of A(f), where
again A stands for E, J, or B. The equation for E(x,s) is

F*E(x,s) _4ms (J N E(x,s) ) 10
T oz [Je(xs) pprarpg | (10)

We assumed that E(x,t=0)=0, since J,(x,t<<0)=0. If the
plasma is located between x=—L and x=L, the plasma re-
turn current is

E(x,s) ) (1)

L
1(t)=L“1f ———dx
AR
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where L "'[A(s)] is the inverse Laplace transform of A(s).
Following Eq. (6}, the plasma return current can also be writ-
ten as
ic L
()= ype B|-, —1,Y(1). (12)
We choose to address the problem in which the plasma is

bounded by conductors at x= L, and therefore the bound-
ary conditions are

E(x==xL,t)=0. (13)

Equation (10), with a specified beam current density, and the
boundary conditions (13) determine E(x,s). Once E(x,s) is
found, the plasma current density can be found from Eq. (8).
In order to find the magnetic field, one has to solve Eq. (6),
with the specified beam current density and the calculated
plasma current density, and, in addition, to require that the
magnetic field flux between the two conducting boundaries
be zero. The vanishing of the magnetic field flux at >0
results from the vanishing of the magnetic field flux at r=0
and from the conservation of the magnetic field flux between
the two conducting boundaries resultings from Eq. (13).

For simplicity, we consider beams of current densities
that are symmeitrical with respect to the plane at x=0. Both
Eg. (10) and the boundary conditions (13) are then sym-
metrical with respect to this plane. As a result, the electric
field and the plasma current density turn out to be symmetri-
cal as well, while the magnetic field turns out to be antisym-
metrical.

In the next sections we consider some particular beam
current densities.

IV. INFINITELY NARROW BEAM

In this section the beam current is assumed to be local-
ized at x=90, i.e.,
Jb(x,t)=1(,y(t)5(x). (14)

Integrating Eq. (10) from x=—¢ to x =€ we obtain:
. 4ms
axE('xys)'-5=_z,2—]0Y(S) (15)

for €—0, while the equation for |x|>0 is
PE(x,s) _477s( E(x,s)

axr T c* \g.tiny

We solve Eq. (10) with the beam current density (14) and the
boundary conditions (13). Alternatively, we may solve Eq.
(16) for x>0 and for x <0 with the boundary conditions (13),

and then match the two solutions at x=0, using the jump
condition (15). We find that

2aslyY(s)

. (16)

E(x,S)=—m(k—L-)‘ smh[k(L~[x[)], 17)
where
47s
k=7
c(n.+iny)
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As expected, since Eq. (10) and the boundary conditions (13)
are symmetrical with respect to the plane at x=0, so is the
electric field (17). From Eq. (11) we obtain

1
e L 8
cosh(kL))} (18)
For the time dependence let us examine two cases, a beam
current switched on as a step function in time, ie., Y{z)
=6(r) (the Heaviside function), and a beam current that is
linearly rising in time, ie., Y(¢)=1/t,.

l(t)=L"[z’0Y(s)( 1-

A. Beam current switched on as a step function in
time

The Laplace transform of Y(¢)=0(¢) is

1
Y(s)=—. (19)
s

Using Egs. (18) and (19), we find that the plasma return
current s’
2y (—1)

m n=0 (n+ :l')

I(t)=

(n+4Himc?
X exp T (g +igyht].

(20)

The evolution of the magnetic field in the plasma due to
the infinitely narrow beam is identical to the evolution of the
magnetic field in the plasma due to a magnetic field that rises
at the plasma—vacuum boundary at x=0. This identity holds
for any time-dependent beam current [,(¢) and any time-
dependent imposed magnetic field By(¢) at x=0, as long as
1,(¢)=—cBy(t)/2w. Indeed, using Egs. (2) and (5) we can
calculate the return current in the plasma that is induced by a
magnetic field that is switched on as a step function in time
at the plasma boundary. As expected, the calculated current
turns out to be equal to the current expressed in Eq. (20), the
return current due to the infinitely narrow beam. The evolu-
tion of the magnetic field in the plasma, as a result of a beam
described by Eq. (14) that is switched on as a step function in
time, is also governed by Eq. (5). Figure 1 shows the mag-
netic field in the plasma versus x/L due to a current of a
narrow beam that is switched on at x=0 as a step function in
time at r=0. Since the beam is narrow (its width is much
narrower than L), the evolution of the magnetic field is de-
scribed approximately by Eq. (5), except at the region in the
vicinity of x=0. In Sec. V we will discuss the effects of the
finite width of the beam. It is seen in the figure that the
velocity of the magnetic field propagation is much higher
than the diffusion velocity. The return current has not only a
z component (the only component it has when the collisional
resistivity is dominant), but also a y component.

At the early time shown in Fig. 1, t=0.01¢y,, the mag--
netic field has not yet reached the conducting boundary at
x=L. Therefore, the presence of the conductors has not yet
affected the evolution of the magnetic field. At later times,
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FIG. 1. The magnetic field, its magnitude and its z and y components, as a
function of x/L at ¢/¢;,=0.0005. The magnetic field is induced by a narrow
beam «L =100 that is switched on as a step function in time at r=0 [Eq.
(34)]. Here ny/7.=20.

reflections from the conducting boundaries generate standing
waves. When there are no collisions, the magnetic field is
periodic in time with a period ¢, = 32L?/c? 5. This period
is the time it takes for the fundamental, slowest, mode to
propagate to the boundary at x=L and to be reflected back-
wards to x=0. Due to a finite collisionality, the amplitude of
the oscillations decreases in time on the resistive time scale.

It can easily be seen from Eq. (20) that, since
(2/mZE;-[(=1)"/(n+}]=1, the initial plasma return cur-
rent cancels the beam current exactly, and therefore
I(0)= —1I. This instantaneous current neutralization is valid
only if the rise time is much longer than the electron plasma
period. Otherwise, the electron inertia has to be taken into
account. It will be shown in Sec. V that an instantaneous
current neutralization occurs for beams of arbitrary time de-
pendence and width, as long as the electron inertia may be
neglected.

B. Beam current linearly rising in time

In this case Y(¢)=t/ty, and therefore

1
Y(S)=t-0;§ . (21)

Using Laplace transform properties, we find the plasma re-
turn current in this case as the integral in time of the plasma
return current expressed in Eq. (20) multiplied by 1/¢,. The
calculated plasma return current is

b

81oL? (=1

tom (e tiny | ) (n+1)3

I(t)

(n+3)?%mc? -
Xexp | ———rr— (mctiny)t |~ |. (22)
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FIG. 2. A linearly rising in time beam current and the z and y components
of the plasma return current as a function of time. The beam is infinitely
narrow [Eq. (22)]. Here ny/%.=10.

A beam current that is linearly rising in time and the
resulting plasma return current [Eq. (22)] are shown in Fig.
2. As seen in the figure, for times t<\t,=0.1¢tp the plasma
return current is approximately equal to the beam current. At
t=ty, the z component of the plasma return current reaches
its maximal value

(23)

where Viy=c?np/4mL. At later times, when t>ty, the re-
turn current does not grow further, even though the beam
current does. The return current then oscillates with an am-
plitude that equals /. Therefore, the whistler mechanism
determines a time ¢y, beyond which the plasma return cur-
rent stops growing. The plasma return current at times ¢3¢y,
is much smaller than the beam current at these times, and is
approximately equal to the beam current that flows at =1y, .
Although this maximal current was found here for a beam
current linearly rising in time, a similar maximal current is
expected for any monotonically increasing in time beam cur-
rent.

The maximal return current calculated here, Iy, should
be compared to the maximal return current calculated in Ref.
1 for a beam of the same current density, as discussed here,
but when varjations were allowed only perpendicular to the
background magnetic field. It has been shown there that, as a
result of a fast magnetosonic wave, the return current reaches
a maximal value I, =1yL/V ,t; (V4 is the Alfvén velocity) at
t=t,, and does not grow further. We assume that the dis-
tance from the beam to the conducting boundaries perpen-
dicular to the background magnetic field is L as well. If
L<c/wp;, the whistler time ¢y, is shorter than the Alfvén
time t,. Therefore, if variations are allowed both perpen-
dicular to and along the background magnetic field, the
dominant mechanism is the whistler propagation of the re-
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turn current along the field, that we have described here. The
maximal plasma return current is not I, , but rather the
smaller current 7y, .

V. A FINITE WIDTH BEAM

We here assume a beam of a finite width, a current 7/,

and a current density
sinh[ a(L —|x|)]
2{1—cosh{alL)] "’
We note that, by defining the dimensionless parameters
t'=[(tc*n,)/4wL?], x' =x/L, and E'=(E/aly7,), we ob-
tain from Eq. (9)

1 sinh[aL(1—|x'])]

2 1-—cosh(el)

14

§yp —————— .
" 1+i(ny/n)

In this form of the equation there are two characteristic pa-
rameters: L and (7y/7,). Laplace transforming Eqgs. (9) and
(24), we obtain an equation for E(x,s):

J,,(x,t)=—10Y(t)a' (24)

2 r__
PE =

3. Y(t")

+ (25)

(32___2__)5( )
* C( 77c+i77H) oS

2a sinh[a(L—[x)1\ 2@s
=(_ 1 —cosh(al) c? Y(s)o- (26)

The solution of the last equation, with the boundary condi-
tions (13), is

E(x,s)=

20 wsY(s)e (sinh[a(L—-[xl)]

c*(a*—k*) \ 1—cosh(al)

L cosh(aL) sinh[k(L— |x|)])
k 1—cosh(al) cosh(kL)

We notice that, in the limit @l —, the expression (27) is

reduced to the expression (17). Following Egs. (8), (24), and

(27), the total current density is

27sY(s)al, ( sinh[ a(L —|x])] a?

Zn(a®= k%) 1—cosh(al) k%

sinh[k(L —[x|)]

(27)

J(x,s)=

a cosh(al)

* % T—cosh(aL)  cosh(kL) (28)
Using Eq. (6), we find that the magnetic field is
4 (=
B=—i——J’de’. (29)
c Jo

Following Eqs. (28) and (29), the Laplace transform of the
magnetic field is calculated and found to be

B(e.5)= Ic(aiBfk ) azy(s)(cosh[a(L—lxl)]

1—cosh(al)
cosh(aL) cosh[k(L— lxl)])
" 1—cosh(al)  cosh(kL) |’ (30)
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where By=2wly/c and the plus and minus signs correspond
to x>0 and x <0, respectively. The Laplace transform of the
plasma return current is

Hs)e LY (s) ( cosh(al) a? k2
()= T cosh(al) | " cosh(kL) @—&% " &=k
+cosh(aL)). (31)

The remaining return current, the difference between the
beam current and the plasma return current, flows in the
conductors as a surface current /. This surface current is

icB(x=%L,s)

Is(x=FL,g)=x——

(32

Using properties of Laplace transforms, we may calcu-
late A(z) at the limit +—0, by making the inverse Laplace
transformation of sA(s), at the limit s—oo, where A is E, J,
or B, Since

2mws*Y(s)cosh(al)
[1—cosh(al)JE®

sT(x,s)=~ (33)

for all Y(s) such that Y(s)=9(1/ys) and s—, the total
current density J(s)=J,(s)+J,(s) is zero and the beam
current is initiaily neutralized. Therefore, the plasma re-
sponds to a fast increase of the beam current by a fast for-
mation of a return current. Initially, the electric field is large,
while the magnetic field and the total current are small.

Let us find the magnetic field and the plasma return cur-
rent for the case of a beam current switched on as a step
function in time. We perform the inverse Laplace transfor-
mation of B(x,s) and of I(s) for Y(s)=1/s. The calculation

of the magnetic field is made easier by writing o?/(a?—k?) as
[k%/(a*~k?) +1]. The magnetic field is found to be

cosh a(L —|x|)]— cosh(aL)
1—cosh{aL)

B(x,t)’: i:iBO

2 cosh(al)
* 7[1—cosh(aL)]

»  (aL)? sin[(n+3)m (x/L)]

X
nm0 (n+H(n+ 3527+ (al)?]
(n+3%mwc?
Xexp| ———pr (7 +inwt | | (34)

The plasma return current is

21y cosh(al)
ar[1—cosh(al)]
S (—1)"(aL)’
=0 (ntDl(n+3)2w?+(al)?]

I(t)=
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FIG. 3. The magnetic field due to the current of a narrow beam aL =50 and the induced plasma return current. The beam current is switched on as a step
function in time at =0 and 7y/7.=10. (a) The magnitude and the z and y components of the magnetic field due to the beam current only as a function of
x/L. (b) The magnitude and the z and y components of the plasma return current as a function of time for 0<t/t,<0.025, (c) 0<t/t,<0.25, (d) 0<t/t;,<0.7.

See Eq. (35).

(n+5H?%7c?
Xexp “—TLz——(ﬂc""i??H)t . (35)

At the limit aL —% expression (34) for the magnetic field
and expression (35) for the plasma return current are reduced
to expressions (5) and (20) for the magnetic field and for the
plasma return current in the case of an infinitely narrow
beam current. We have previously shown [Eq. (33)] that, for
arbitrary time dependence, the beam current is initially neu-
tralized. In the Appendix we show directly from the expres-
sions (34) and (35) that B(x,t=0)=0 and that the initial
total current is zero for this particular time dependence of the
beam current, that is switched on as a step function in time.

We notice that some of the features of the magnetic field
evolution in the case of the infinitely narrow beam current
also appear here. These features include the evolution of the
magnetic field on the whistler time scale and, for 7,=0, the
periodicity in time of the magnetic field and of the plasma
return current with a period ¢}, = 32L%/c?7y. The effect of
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the finite width of the beam can be seen by comparing the
narrow beam limit (al —) with the wide beam limit
(aL-0). In the narrow beam limit the amplitude of the
modes in Eqgs. (34) and (35) is proportional to 1/(n + 3), while
in the wide beam limit the amplitude is proportional to
1/(n+ %)3. Therefore, when the beam is narrow the amplitude
of the modes decreases slower as a function of the mode
number. As a result, when the beam is narrow more modes in
the series (34) and (35) are dominant. The magnetic field and
the return current then propagate with shorter wavelengths
and higher frequencies. This effect of the width of the beam
is demonstrated in Figs. 3 and 4. In the figures the plasma
return current is shown as a function of time [Eq. (35)] for
74/ m.=10. In Fig. 3 the beam is narrow, aL =50, while in
Fig. 4 the beam is wide, aL =0.1. Fast oscillations exist
when the beam is narrow and they are much less apparent
when the beam is wide. The beam in Fig. 1, for which the
magnetic field is shown, is narrow, al =100.

For the case discussed here, of a beam of a finite width,
we do not write the explicit expressions for the fields and the
currents when the beam current is linearly rising in time.
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FIG. 4. The magnetic field due to the current of a wide beam «f =0.1 and the induced plasma return current. The beam current is switched op as a step
function in time at +=0 and m/7,=10. (a) The magnitude and the z and y components of the magnetic field due to the beam current only as a function of
x/L. (b) The magnitude and the z and y components of the plasma return cusrent as a function of time for 0<t/1,<0.025, (c) 0<t/t;,<0.25, (d) O0<t/t,<0.7.

See Eq, (35).

However, we mention that these expressions could be found
by use of an integration in time of the expressions [Egs. (34)
and (35)] for the fields and the currents when the beam cur-
rent is switched on as a step function in time. If Y (#)=1/t,,
it is clear that the amplitude of the mode is reduced by the
factors [1/(n+1)*] and [L?/(c*tymy)] relative to the ampli-
tude described above. As a result of the first factor, the higher
modes are less dominant and the more gradual increase of
the beam current resulis in a smoother magnetic field and
plasma return current. The second factor makes the ampli-
tude of the plasma return current inversely proportional to
the current rise time ¢g.

Vi. CONCLUSIONS

In this paper we have studied the effect of the whistler
waves on the evolution of the plasma return current induced
by a beam current in a magnetized plasma. We have shown,
in a simplified 1-D model, that if variations are allowed
along the background magnetic field, and if the characteristic

2486 Phys. Plasmas, Vol. 1, No. 8, August 1994

length along this field is smaller than the ion skin depth, the
whistler mechanism is dominant in the decay of the plasma
return current. The whistler velocity is then higher than the
Alfvén velocity, and is also higher than the usually low dif-
fusion velocity, If the plasma is bounded by conductors, the
return current in the plasma exhibits whistler oscillations in
time. The oscillations are damped on the diffusion time.
When the beam current is monotonically rising in time, the
plasma return current stops growing beyond the whistler
time, thus remains small relative to the beam current that
continues to grow, A finite width and a finite rise time of the
beam current reduce the amplitudes of the high modes with
high frequencies, thus smoothing in time, and in space, the
plasma return current,

Even though the main physical process is captured by
our 1-D model, some processes require at least 2-D model-
ing. These are, for example, the finite length of the beam and
the nonuniformity of the background magnetic field.
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APPENDIX: INITIAL VALUES OF THE MAGNETIC
FIELD AND OF THE CURRENT

We show here that the magnetic field expressed in Eq.
(34) satisfies B(x,t=0)=0. This is easily seen by noticing
that the Fourier series of

(cosh[a(L—x)] ])

cosh{ aL)
expanded between x=0 and x=L is

fL (cosh(a(L—x)_l) ) ( oy T )
¢ cosh(al) sin| (n+2) L
1 1 1

_ L
(n+5)(w/L) 2 [(n+3(w/L)+ia]

)

i 1
"2 [+ Y(wl)~ia]

3 al
(n+ Hal(n+H2r+(al)?]

Therefore, B(x,t=0)=0.

Since the magnetic field is zero at r=0, it is obvious
from Ampere’s law that the current density and the current
are zero at t=0. We show that this is so also by showing that
the plasma return current expressed in Eq. (35) equals —/ at
t=0. The plasma return current at t=0 can be calculated by
performing the summation of the series. We assume that
2al/m<] and obtain

x

2 1
107_-,- Y 3.2 172
w=0 (n+3)mH{l+[al/m(n+ )]}

(___l)k+n(aL)2 ( al )2/(

=12 i

n=0 k=0

o w (
=l > X
n=0 k=0

x
N (n+3)*m | w(n+3)

_ l)k+n(aL)Zk+222k+4
(2n+ 1777(-4—3,,,_2/(-1-3

(A1)
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On the other hand,

1 —cosh{aL) i
cosh(al ) z

(—1)*E(al)*
2k!

It

k=0

k=0 n=0

(aL)Zk(_ 1)k+1122k+2
,n.2k+1(2n+1)2k+1 1’

where E, are the Euler numbers. The term k=0 of the last
sum is

x

2 4( — l )n _
m(2n+1)
n=0 4
Therefore,
[1—cosh(aL)]
cosh{ al )

e o (
=102 E
k=0 n=0

0

aL)2k+2(__ 1 )k+n+122k+4

,n.2k+3(2n+ 1)2k+3

This expression is identical to Eq. (Al). We therefore obtain
that [I(¢=0)/1,]=—1. The case in which 2aL/#>1 can be
analyzed in a similar fashion.
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